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Rectangular-bar specimens with nonhomogeneous (quasilayered) porosity distribution
were prepared from an iron powder. Using these specimens, differences were observed in
effective Young’s modulus values determined experimentally by means of specimen
flexural vibrations with bending in the plane of quasilayers and in the plane perpendicular
to quasilayers. To account for these differences, general expressions for resonance
frequencies of flexural vibrations of model quasilayered bars were derived in a theoretical
way. The model quasilayered bar means a prismatic bar of rectangular cross section, with
material Young’s modulus varying continuously only along one of transverse directions.
Substituting theoretical resonance frequencies, instead of experimentally measured ones,
into the routine evaluation procedure of the dynamical resonant method, theoretical values
of effective Young’s modulus were calculated. In majority of theoretically investigated
simple model examples with lowered modulus of surface regions the effective modulus
determined by means of the frequency of sample flexural vibration perpendicular to layers
is lower than the effective modulus determined by means of the vibration parallel to the
layers. These theoretical results explain qualitatively the effective modulus differences
obtained for our quasilayered samples in an experimental way. C© 1999 Kluwer Academic
Publishers

1. Introduction
Powder metallurgy (PM) structural parts produced by
pressing and sintering are used to a considerable extent
in automotive engines, transmissions etc. The most dis-
tinctive feature of these parts is their inherent poros-
ity. Since it is impossible to fully consolidate most
metal powders at ambient temperature, reasonable ef-
fort and costs, the residual porosity has to be accepted.
Numerous publications have dealt with the relation-
ships total porosity-mechanical properties. In particu-
lar the Young’s modulus, which is a property not linked
to plastic deformation or to singular defects in the ma-
terial, has been a target for investigations (e.g. [1–4]).

Generally, it is agreed upon that the mechanical prop-
erties of PM ferrous components are adversely affected
by the porosity. This is particularly true for fatigue
loaded parts. Recently, attempts have been made to pro-
duce gears for automotive transmissions by PM tech-
niques which is however successful only if sufficiently
low porosity can be obtained at least at the surfaces
subjected to contact fatigue loading. A promising ap-
proach is selective densification at the loaded surface,
e.g. by rolling [5]. This results in a quasilayered struc-

ture with fairly dense surface regions and considerably
more porous core. On the other hand, also the reverse
structure, with porous (e.g. self-lubricating) surfaces
and strong solid cores might be useful.

For structural parts, besides the total porosity, also the
layered structure (i.e., intentional or accidental nonho-
mogeneous porosity distribution) should have a pro-
nounced effect on the overall properties of sintered
components. Within this work it is shown how the mea-
surement of the effective Young’s modulus by means of
the dynamical resonant method is affected by variation
in porosity along the specimen cross section.

Strictly speaking, the modulus determined by means
of measurements of the frequencies of flexural vi-
brations is the effective flexural modulus of the par-
ticular bar being tested. For uniform, homogeneous
and isotropic bar the flexural modulus is same as the
Young’s modulus of bar material. So, throughout this
article, we call this flexural modulus as an effective
Young’s modulusEv.

Within the Classical Lamination Theory (e.g. [6]) it
was established that for actual layered specimens (with
sharp planar interfaces between constant-parameter
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TABLE I Chemical composition of the starting iron powder

C Si Mn P S O2 N2 Rest insoluble Fe
(%) (%) (%) (%) (%) (%) (%) in HCl (%)

0.02 0.03 0.079 0.003 0.008 0.124 0.006 0.117 Rest

layers) the effective flexural moduli are different when
the bending plane is parallel and perpendicular to the
layers. In this case the effective flexural moduliEv are
different from the effective extensional or tensile mod-
uli Et, too [6].

One of aims of this article is to show in a theoreti-
cal way that also quasilayered structure, with more or
less continuously varying porosity (and consequently
effective material Young’s modulus value) along one
direction of the bar cross section, can really lead to
the observed different values of effective moduli deter-
mined by means of the resonant frequencies of flexural
vibrations perpendicular and parallel to quasilayers.

2. Specimen preparation and testing
Specimens with quasilayered structure were prepared
from an iron powder by pressing and sintering with
subsequent hammer forging.

The experimental programme was carried out on the
basis of a water atomized iron powder WPL-200, pro-
duced by means of Mannesmann equipment at ZVL-
METALSINT a.s. Dolný Kubı́n, Slovakia. The chemi-
cal composition of the powder is shown in Table I. The
particles of the powder are of approximately equiaxed
type with the characteristic articulation of the surface.

To obtain the specimens with low and nonhomoge-
neously distributed porosity, the following technolog-
ical procedure was used: Samples were compacted at
600 MPa to four different heights (12, 10, 8, and 7 mm).
The compacts were then sintered for 2 h at1120◦C in
a retort silit furnace, the atmosphere being cracked am-
monia (75%H2+ 25%N2). The dew point of the atmo-
sphere was−20◦C. The sintered test bars were densi-
fied by hammer forging at 1100◦C in hydrogen atmo-
sphere to final height of 6 mm. The volume density of
the resulting rectangular bars was determined by mea-
suring the dimensions and by weighing. The porosity
obtained was in the range from 2.4 to 7.6%. The fi-
nal size of the bars being tested were 6 mm× 6 mm×
90 mm. The frequency of specimens natural vibrations
was measured employing the apparatus Gringo Sonic
MKS “Industrial” at University of Vienna. The fre-
quency of flexural fundamental mode for the bar with
free ends was used for the modulus evaluating.

3. Experimental results
Metallographic study revealed that the technological
procedure used for preparing the specimens led to non-
homogeneous porosity distribution within the samples.
The porosity is varying along the pressing (and forg-
ing) direction and its value decreases from the surface
to the bulk of specimens (Fig. 1). So the samples can be
assumed as “quasilayered”, with layers perpendicular
to the pressing (forging) direction. The term “quasilay-
ered” is used as, firstly, small porosity fluctuations are

Figure 1 Polished cross section of a sample of total porosity 2.7%, made
from a sintered powder iron. In this figure, pressing direction is the
vertical one.

observed also in the direction perpendicular to pressing
and, secondly, transitions between various porosity re-
gions along the pressing direction are continuous rather
than sharp, stepwise.

The dynamical resonant method [7] was used for
determining the Young’s modulus. The frequency of
fundamental flexural mode of the prismatic bar of rect-
angular cross section was employed. The experimental
equipment configuration was such that vibrations of the
bar with free ends were realized. In this case the mod-
ulus is evaluated by means of the expression [7].

Ev = 0.94642
ρL4 f 2

t2
T

(1)

T = 1+ O

((
t

L

)2
)

Hereρ is density of material,L represents the length
of specimen,t is the specimen cross-sectional dimen-
sion in the direction of vibration andf represents the
measured resonance frequency of the fundamental flex-
ural mode.T is a correction factor allowing for the fi-
nite value of the ratiot/L. SymbolO(x) represents the
quantities of order less or equal to the order of quan-
tity x.

Since our specimens were not isotropic and homo-
geneous, the modulus measured was an effective mod-
ulus (in fact, the effective flexural modulus—see note
in Section 1) and differences in the values obtained
parallel and perpendicular, respectively, to the pressing
direction were expected. In fact it turned out that theE
values determined by means of the specimen flexural
vibration with bending plane parallel to the pressing di-
rection were lower than those determined perpendicular
to the pressing axis (Fig. 2).

For evaluating the “experimental” moduli from mea-
sured resonant frequencies and geometrical dimensions
of the sample, formulas (1) derived for homogeneous,
isotropic and uniform samples made from a linearly
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Figure 2 Young’s modulusE as a function of a total porosityP. Values
presented were determined in an experimental way from the specimen
flexural vibration in the direction parallel (x) and perpendicular (h) to
the pressing direction.

elastic material were used. If in this case variations in
the moduli measured in various directions are observed,
it must be assumed that the sample tested does not fulfill
at least one of the given theoretical assumptions, i.e., it
is not sufficiently linearly elastic, and/or not homoge-
neous and isotropic, etc. In the present case, of course,
the latter mentioned fact, the layered structure of the
specimen, is the reason for the deviation measured.

4. Vibration of quasilayered bars. Theory
As we noted in Section 1, Classical Lamination Theory
(e.g [6]) provides different values of effective flexural
moduli of actual layered materials when the bending
occurs perpendicular and parallel to the layers.

To support the above statement in a theoretical way
also for quasilayered bars, the standard “dynamical-
resonant-method” evaluating procedure (Equation 1)
was used for determining the Young’s modulus values.
But instead of experimentally measured resonant fre-
quency, theoretically calculated natural frequency of a
quasilayered bar was used as an “input parameter”.

Somewhat simplified theoretical model of the real
specimen was used for calculating the natural fre-
quency. A rectangular bar of heightH , width W and
lengthL was considered. Properties of material of the
bar (Young’s modulusE, densityρ) were assumed as
varying only in the direction of the bar height. Along the
bar length and width the properties are constant. As the
flexural vibration was used for experimental determin-
ing E on our samples, it was necessary to modify the
Bernoulli-Euler beam theory (e.g. [8]) to be applicable
to the quasilayered samples.

Vibration frequencies are obtained by solving the
corresponding equation of motion [8]. The equation of
motion is derived by means of the Hamilton’s princi-
ple of minimal action. Lagrange’s function, occurring
in the expression for action, consists of the kinetic and
potential (elastic) energies of a deformed bar. Required
elastic energy is determined by means of the strain and
stress tensor fields derived for a bent quasilayered bar

under consideration. The geometry of deformation of
material fibers and bar planar cross sections in a bent
quasilayered bar is similar to the geometry of deforma-
tion in a homogeneous bar. Therefore, the strain tensor
is qualitatively similar to the strain tensor in a homo-
geneous bar, that is, the relative fiber elongation (con-
traction) in a given point of the cross section increases
linearly with increasing distance from the neutral axis
of a given cross section. This neutral axis, in general,
is perpendicular to the bending plane but does not pass
through the centroid of the cross section, as it is in a
homogeneous bar.

The stress tensor is determined on the basis of the
Hooke’s law by means of the above mentioned strain
tensor and the nonhomogeneous distribution of the ma-
terial Young’s modulus values along the cross section.

The resultant elastic energy of a bent quasilayered
bar, if expressed by means of the neutral-fiber cur-
vature, differs from the elastic energy of a homo-
geneous bar only by a pre-factor; where the expres-
sions

∫∫
cross sectionE(h)h2 dh dw for bending in theHL

plane or
∫∫

cross sectionE(h)w2 dh dw for bending in the
WL plane play the role of the flexural rigidity of
the bar. Quantitiesh andw are distances of a given
area element dh dw from the cross section neutral
axis for a given type of bending. Neutral-axis posi-
tion within the cross section is determined by condi-
tion

∫∫
cross sectionE(h)h dh dw = 0 (bending in theHL

plane) or
∫∫

cross sectionE(h)w dh dw = 0 (bending in
theWL plane).

The kinetic energy of a quasilayered bar, if expressed
by means of the velocity of the neutral-fiber transverse
motion, differs from that of a homogeneous bar by
the pre-factor

∫∫
cross sectionρ(h) dh dw instead of the

HWρ0.
These differences lead to the analogous changes of

corresponding quantities in the equation of motion and
consequently in the relation for frequency of a homoge-
neous bar when they are rederived for the quasilayered
bar.

Taking into account the conditions determining the
neutral-axis position within the quasilayered bar cross
section and transforming relevant expressions from the
hw-frame to the co-ordinate frame determined by the
cross-section edges (the origin at the vertex of the cross
section, axisx oriented along the height of the bar)
we get the following relations for the natural angular
frequenciesω≡ 2π f of flexural vibration of the quasi-
layered bar being considered:

ω2
i⊥ =

n4
i

ρH L4


∫ H

0
E(x)x2 dx −

(∫ H

0
E(x)x dx

)2

∫ H

0
E(x) dx


for vibration with the bending plane parallel to
theHL plane (2a)

ω2
i ‖ =

n4
i W2

12ρH L4

∫ H

0
E(x) dx for vibration with the

bending plane parallel to theWL plane (2b)
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Hereρ is the averaged bar mass density.ni ’s are roots of
the corresponding characteristic equation determined
by the boundary conditions being applied (e.g., for a bar
with free ends this equation is cos(ni ) cosh(ni )= 1).

Substituting expressions (2a) and (2b) into the for-
mula (1) used for evaluating the “experimental” moduli,
and assuming thatL À W, H, that is,T = 1 with great
accuracy, the following relations for effective moduli
are obtained:

Ev
⊥ =

12

H3


∫ H

0
E(x)x2 dx −

(∫ H

0
E(x)x dx

)2

∫ H

0
E(x) dx


for vibration in theHL plane, i.e., bending occur-
ring perpendicular to quasilayers (3a)

Ev
‖ =

1

H

∫ H

0
E(x) dx for vibration in theWL plane,

i.e., bending occurring parallel to quasilayers

(3b)

It should be noted that above expressions for effective
moduli derived by means of natural frequencies of a
quasilayered bar undergoing flexural-vibration test dif-
fer from those derived by means of an elongation of
the same bar undergoing tensile test. Qualitatively sim-
ilar results are provided by the Classical Lamination
Theory for actual layered bars.

The expressions for “tensile” moduli can be derived
by modifying the procedure used for evaluating the ef-
fective moduli for a slab model of composite materials
(e.g. [6, 9]). For our quasilayered bar we obtain:

Et
⊥ =

(
1

H

∫ H

0

dx

E(x)

)−1

for a tension perpendicular

to quasilayers, i.e. along the direction ofH (4a)

Et
‖ =

1

H

∫ H

0
E(x) dx for a tension parallel to

quasilayers, i.e. along the direction ofL or W

(4b)

Expressions forEv
‖ andEt

‖ are identical each other. For
actual layered bars they obtain the form known as the
Rule or Law of Mixtures, which one is often used for
calculating the effective modulus of multiphase materi-
als. Expressions forEv

⊥ andEt
⊥ differ from each other

and from expressions for “parallel” effective moduli.

5. Some illustrative examples
Effective Young’s moduli (Ev

⊥ andEv
‖) were calculated

for a number of bars with various distribution of mate-
rial Young’s modulus values along the bar height. Some
of them are presented below to illustrate some charac-
teristic features of these moduli.

Figure 3 Effective Young’s modulusEv
eff (Ev

eff = Ev
⊥, Ev

‖ ) as a function
of the surface-to-bulk Young’s moduli ratioES/EB. Values presented
were calculated in a theoretical way for a symmetric rectangular bar
with the material modulus varying along the bar height linearly with the
distance from the bar centre (thicker curves) and as the sixth power of
the distance from the bar centre (thinner curves). Doted lines represent
Ev
‖/EB, solid linesEv

⊥/EB.

As an example of situations with continuously vary-
ing modulus values, the results for the case with sym-
metric (E(ξ ) = E(−ξ )) modulus distribution charac-
terized by a function

E(ξ ) = EB + (ES− EB)ξn 0 ≤ ξ ≤ 1

are presented. Hereξ is a dimensionless coordinate de-
termining a position along the bar height (ξ = 0 is for
the centre of the bar,ξ = ±1 are for the surface).ES
is the surface value of the Young’s modulus,EB is that
for the centre of the bar. Examples presented in Fig. 3
are curves calculated forn = 1 and forn = 6.

For all the cases investigated,Ev
⊥ was lower thanEv

‖
for ES < EB andEv

⊥ was higher thanEv
‖ for ES > EB.

The differences betweenEv
⊥ andEv

‖ , and between effec-
tive moduli andEB decrease with increasing exponent
n. It is due to the fact, that with increasing value ofn
the volume fraction of material with modulus equal or
nearly equal toEB increases.

The examples of effective Young’s moduli for bars
with discontinuous distribution of material modulus
(actual layered bars) are shown in Fig. 4. The curves
presented are the effective moduli calculated for a sym-
metric bar consisting of three layers. The material mod-
uli within each layer are constant. Two outer layers are
identical with respect to moduli values and geometrical
dimension. For a such bar we have:

Ev
⊥ = ES+ (EB − ES)v3

B

Ev
‖ = Et

‖ = ESvS+ EBvB (Rule of Mixtures)

Et
⊥ =

ESEB

ESvB + EBvS

HereES is the Young’s modulus in outer layers,EB in
the central layer.vS andvB are volume fractions of the
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Figure 4 Effective Young’s modulusEv
eff (Ev

eff = Ev
⊥, Ev

‖ ) as a function
of the outer-layers volume fractionv. Values presented were calculated
in a theoretical way for a symmetric rectangular bar consisting of three
layers. The outer-to-central layer Young’s moduli ratiosES/EB were 0.8
(thicker curves) and 1.2 (thinner curves). Doted lines representEv

‖/EB,
solid linesEv

⊥/EB.

Figure 5 Effective Young’s modulusEv
eff (Ev

eff = Ev
⊥, Ev

‖ ) as a function
of the outer-layers volume fractionv. Values presented were calculated
in a theoretical way for a symmetric rectangular bar consisting of three
layers. Outer layers are porous with the Young’s modulus linearly de-
creasing with the porosity, central layer is poreless with the Young’s
modulusEB. The total porosity is assumed as constant and of amount
that, being distributed homogeneously throughout the sample, it would
lower the Young’s modulus to the value 0.8EB. Doted line represents
Ev
‖/EB, solid lineEv

⊥/EB.

outer layers and central layer, respectively. They obey
the conditionvS+ vB = 1.

Also in this caseEv
⊥ is lower thanEv

‖ when the mod-
ulus of outer layers is lower than the modulus of a cen-
tral layer, andEv

⊥ is higher thanEv
‖ if the central-layer

modulus is lower than that of outer layers.
Fig. 5 illustrates the statement that in the case of non-

homogeneous porosity distribution, macroscopic prop-
erties of specimens are determined not only by the total
porosity but also by the distribution of porosity. In this

case we investigated the symmetric bar consisting of
three layers, too. Two outer layers are identical and
porous with homogeneously distributed porosity. The
central layer is poreless. The porosity causes the de-
crease of the effective Young’s modulus of the outer
layers. We assume that within the porosity range under
consideration the Young’s modulus decreases linearly
with increasing porosity. We calculated the effective
moduli Ev

⊥ andEv
‖ for situations with a constant total

porosity of the bar and with various outer layers heights.
The requirement of constant total porosity leads to the
change of the porosity within the outer layers when the
height of these layers changed. Consequently, it leads
to the change of the effective moduli of the outer lay-
ers with changing the volume fraction occupied by the
outer layers within the bar.

Our calculations showed that within the model con-
sidered the effective modulusEv

‖ depends only on the
total porosity and it is independent on the porosity dis-
tribution for a wide class of distribution functions. On
the other hand, the effective modulusEv

⊥ is sensitive to
the total porosity as well as to the porosity distribution
(Fig. 5).

6. Conclusions
In this paper, the results of both experimental determi-
nations and theoretical calculations of effective moduli
of bars made from sintered iron, with a quasilayered
porosity distribution caused by the process of produc-
tion, are presented. These results can be recapitulated
as follows:

(i) The samples used for experimental testing were
quasilayered in the sense that porosity decreased from
surfaces to the centre of bars only in one transverse di-
rection (coincident with the direction of pressing during
sample preparation). Along the other transverse direc-
tion as well as along the length of the bar the porosity
was nearly constant. The effective Young’s moduli de-
rived from measurements of resonance frequency of the
flexural fundamental mode with the bending plane per-
pendicular to quasilayers were lower than those derived
by means of vibrations parallel to quasilayers (Fig. 2).

(ii) The general expressions (2a) and (2b) for res-
onance frequencies of flexural vibrations (and conse-
quently for effective flexural moduli (3a) and (3b)—
effective Young’s moduli in terminology of this arti-
cle) of prismatic quasilayered bars of rectangular cross
section were derived in a theoretical way. In these ex-
pressions, the crucial role is played by the bar-material
Young’s modulus value as a function (continuous or
step-like) of position along the bar cross section. For de-
termining the position within the cross section, the nat-
ural coordinate frame connected with the cross-section
edges is used. The expressions are closed in the sense
that no preliminary determination of neutral-axis posi-
tion is needed.

The following conclusions can be drawn from our
theoretical investigations based on Eqs. (3a) and (3b):

(iii) For structural parts with a nonhomogeneous
porosity distribution, the total porosity alone is insuf-
ficient for determining the macroscopic properties of
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these parts in some applications. Informations about
the porosity distribution are also needed for predicting
the behaviour of specimens in particular situations.

(iv) Effective Young’s moduli evaluated by means of
measured resonant frequencies of a rectangular quasi-
layered bar undergoing flexural vibration of various po-
larization can really differ from each other. And in situa-
tions, when a material modulus of the surface regions is
lower than the material modulus of the bulk of the sam-
ple, values of effective moduli provided by vibration
perpendicular to layers are usually lower than the values
provided by vibration parallel to layers. This theoretical
result confirms qualitatively the initial assumption that
the Young’s modulus differences obtained in an exper-
imental way are due to the “quasilayered” structure of
the samples used. As the porosity in our samples was
considerably concentrated near the surface (Fig. 1), the
samples can be treated as layered bars with a lower
modulus near the surface and a higher modulus in the
core of the sample. And just the model systems with
such distribution of material modulus values provide
the same qualitative relations betweenEv

⊥ and Ev
‖ as

the experiments on our samples.
To compare our theoretical and experimental results

also quantitatively, the detailed quantitative informa-
tion on the porosity distribution throughout the bar cross
section is needed. Determination of this porosity dis-
tribution represents the aims of current metallographic
studies.
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